840 research outputs found

    Mining for Useful Association Rules Using the ATMS

    Get PDF
    Association rule mining has made many achievements in the area of knowledge discovery in databases. Recent years, the quality of the extracted association rules has drawn more and more attention from researchers in data mining community. One big concern is with the size of the extracted rule set. Very often tens of thousands of association rules are extracted among which many are redundant thus useless. In this paper, we first analyze the redundancy problem in association rules and then propose a novel ATMS-based method for extracting non-redundant association rules

    Interpretations of Association Rules by Granular Computing

    Get PDF
    We present interpretations for association rules. We first introduce Pawlak's method, and the corresponding algorithm of finding decision rules (a kind of association rules). We then use extended random sets to present a new algorithm of finding interesting rules. We prove that the new algorithm is faster than Pawlak's algorithm. The extended random sets are easily to include more than one criterion for determining interesting rules. We also provide two measures for dealing with uncertainties in association rules

    A pattern mining approach for information filtering systems

    Get PDF
    It is a big challenge to clearly identify the boundary between positive and negative streams for information filtering systems. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on the RCV1 data collection, and substantial experiments show that the proposed approach achieves encouraging performance and the performance is also consistent for adaptive filtering as well

    XML documents clustering using a tensor space model

    Get PDF
    The traditional Vector Space Model (VSM) is not able to represent both the structure and the content of XML documents. This paper introduces a novel method of representing XML documents in a Tensor Space Model (TSM) and then utilizing it for clustering. Empirical analysis shows that the proposed method is scalable for large-sized datasets; as well, the factorized matrices produced from the proposed method help to improve the quality of clusters through the enriched document representation of both structure and content information

    Modeling intelligent agents for web-based information gathering

    Full text link
    The recent emergence of intelligent agent technology and advances in information gathering have been the important steps forward in efficiently managing and using the vast amount of information now available on the Web to make informed decisions. There are, however, still many problems that need to be overcome in the information gathering research arena to enable the delivery of relevant information required by end users. Good decisions cannot be made without sufficient, timely, and correct information. Traditionally it is said that knowledge is power, however, nowadays sufficient, timely, and correct information is power. So gathering relevant information to meet user information needs is the crucial step for making good decisions. The ideal goal of information gathering is to obtain only the information that users need (no more and no less). However, the volume of information available, diversity formats of information, uncertainties of information, and distributed locations of information (e.g. World Wide Web) hinder the process of gathering the right information to meet the user needs. Specifically, two fundamental issues in regard to efficiency of information gathering are mismatch and overload. The mismatch means some information that meets user needs has not been gathered (or missed out), whereas, the overload means some gathered information is not what users need. Traditional information retrieval has been developed well in the past twenty years. The introduction of the Web has changed people\u27s perceptions of information retrieval. Usually, the task of information retrieval is considered to have the function of leading the user to those documents that are relevant to his/her information needs. The similar function in information retrieval is to filter out the irrelevant documents (or called information filtering). Research into traditional information retrieval has provided many retrieval models and techniques to represent documents and queries. Nowadays, information is becoming highly distributed, and increasingly difficult to gather. On the other hand, people have found a lot of uncertainties that are contained in the user information needs. These motivate the need for research in agent-based information gathering. Agent-based information systems arise at this moment. In these kinds of systems, intelligent agents will get commitments from their users and act on the users behalf to gather the required information. They can easily retrieve the relevant information from highly distributed uncertain environments because of their merits of intelligent, autonomy and distribution. The current research for agent-based information gathering systems is divided into single agent gathering systems, and multi-agent gathering systems. In both research areas, there are still open problems to be solved so that agent-based information gathering systems can retrieve the uncertain information more effectively from the highly distributed environments. The aim of this thesis is to research the theoretical framework for intelligent agents to gather information from the Web. This research integrates the areas of information retrieval and intelligent agents. The specific research areas in this thesis are the development of an information filtering model for single agent systems, and the development of a dynamic belief model for information fusion for multi-agent systems. The research results are also supported by the construction of real information gathering agents (e.g., Job Agent) for the Internet to help users to gather useful information stored in Web sites. In such a framework, information gathering agents have abilities to describe (or learn) the user information needs, and act like users to retrieve, filter, and/or fuse the information. A rough set based information filtering model is developed to address the problem of overload. The new approach allows users to describe their information needs on user concept spaces rather than on document spaces, and it views a user information need as a rough set over the document space. The rough set decision theory is used to classify new documents into three regions: positive region, boundary region, and negative region. Two experiments are presented to verify this model, and it shows that the rough set based model provides an efficient approach to the overload problem. In this research, a dynamic belief model for information fusion in multi-agent environments is also developed. This model has a polynomial time complexity, and it has been proven that the fusion results are belief (mass) functions. By using this model, a collection fusion algorithm for information gathering agents is presented. The difficult problem for this research is the case where collections may be used by more than one agent. This algorithm, however, uses the technique of cooperation between agents, and provides a solution for this difficult problem in distributed information retrieval systems. This thesis presents the solutions to the theoretical problems in agent-based information gathering systems, including information filtering models, agent belief modeling, and collection fusions. It also presents solutions to some of the technical problems in agent-based information systems, such as document classification, the architecture for agent-based information gathering systems, and the decision in multiple agent environments. Such kinds of information gathering agents will gather relevant information from highly distributed uncertain environments

    Effective pattern discovery for text mining

    Get PDF
    Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance

    Improving Recommendation Novelty Based on Topic Taxonomy

    Get PDF
    Clustering has been a widely applied approach to improve the computation efficiency of collaborative filtering based recommendation systems. Many techniques have been suggested to discover the item-to-item, user-to- user, and item-to-user associations within user clusters. However, there are few systems utilize the cluster based topic-to-topic associations to make recommendations. This paper suggests a taxonomy-based recommender system that utilizes cluster based topic-to-topic associations to improve its recommendation quality and novelty
    corecore